
Top-Down Parsing

Parsing:

• Context-free syntax is expressed with a context-free grammar.

• The process of discovering a derivation for some sentence.

Recursive-Descent Parsing

• 1. Construct the root with the starting symbol of the grammar.

• 2. Repeat until the fringe of the parse tree matches the input string:
• Assuming a node labelled A, select a production with A on its left-hand-side and, for each

symbol on its right-hand-side, construct the appropriate child.

• When a terminal symbol is added to the fringe and it doesn’t match the fringe, backtrack.

• Find the next node to be expanded.

The key is picking the right production in the first step: that choice
should be guided by the input string.

Example: Parse x-2*y
Example:
1. Goal Expr 5. Term Term * Factor
2. Expr Expr + Term 6. | Term / Factor
3. | Expr – Term 7. | Factor
4. | Term 8. Factor number

9. | id

Rule Sentential Form Input

Example: Parse x-2*y
Example:
1. Goal Expr 5. Term Term * Factor
2. Expr Expr + Term 6. | Term / Factor
3. | Expr – Term 7. | Factor
4. | Term 8. Factor number

9. | id

Rule Sentential Form Input
- Goal | x – 2*y

1 Expr | x – 2*y

2 Expr + Term | x – 2*y

4 Term + Term | x – 2*y

7 Factor + Term | x – 2*y

9 id + Term | x – 2*y

Fail id + Term x | – 2*y

Back Expr | x – 2*y

3 Expr – Term | x – 2*y

4 Term – Term | x – 2*y

7 Factor – Term | x – 2*y

9 id – Term | x – 2*y

Match id – Term x – | 2*y

7 id – Factor x – | 2*y

9 id – num x – | 2*y

Fail id – num x – 2 | *y

Back id – Term x – | 2*y

5 id – Term * Factor x – | 2*y

7 id – Factor * Factor x – | 2*y

8 id – num * Factor x – | 2*y

match id – num * Factor x – 2* | y

9 id – num * id x – 2* | y

match id – num * id x – 2*y |

• Wrong choice leads to non-termination!

• This is a bad property for a parser!

• Parser must make the right choice!

Rule Sentential Form Input
- Goal | x – 2*y

1 Expr | x – 2*y

2 Expr + Term | x – 2*y

2 Expr + Term + Term | x – 2*y

2 Expr + Term + Term + Term | x – 2*y

2 Expr + Term + Term + … + Term | x – 2*y

Example: Parse x-2*y

Example:
1. Goal Expr 5. Term Term * Factor
2. Expr Expr + Term 6. | Term / Factor
3. | Expr – Term 7. | Factor
4. | Term 8. Factor number

9. | id

Left-Recursive Grammars

• Definition: A grammar is left-recursive if it has a non-terminal symbol
A, such that there is a derivation AAa, for some string a.

• A left-recursive grammar can cause a recursive-descent parser to go
into an infinite loop.

Eliminating left-recursion:

• In many cases, it is sufficient to replace AAa | b with A bA'
and A' aA' |

• Example:

Sum Sum+number | number

would become:

Sum number Sum'

Sum' +number Sum' |

Eliminating Left Recursion

Applying the transformation to the Grammar of the
Example we get:

Expr Term Expr'
Expr' +Term Expr' | – Term Expr' |
Term Factor Term'
Term' *Factor Term' | / Factor Term' |
(Goal Expr and Factor number | id

remain unchanged)
Non-intuitive, but it works!

Example:
1. Goal Expr 5. Term Term * Factor
2. Expr Expr + Term 6. | Term / Factor
3. | Expr – Term 7. | Factor
4. | Term 8. Factor number

9. | id

Where are we?

• We can produce a top-down parser, but:

– if it picks the wrong production rule it has to backtrack.

• Idea: look ahead in input and use context to

pick correctly.

• How much lookahead is needed?

– In general, an arbitrarily large amount.

– Fortunately, most programming language constructs

fall into subclasses of context-free grammars that

can be parsed with limited lookahead.

Predictive Parsing

• Basic idea:

– For any production A a | b we would like to have a distinct way of choosing the correct production

to expand.

• FIRST sets:

– For any symbol A, FIRST(A) is defined as the set of terminal symbols that appear as the first symbol

of one or more strings derived from A.

E.g. Expr Term Expr'

Expr' +Term Expr' | – Term Expr' |
Term Factor Term'
Term' *Factor Term' | / Factor Term' |
(Goal Expr and Factor number | id

FIRST(Expr')={+,-,}, FIRST(Term')={*,/,}, FIRST(Factor)={number, id}

The LL(1) property

• If Aa and Ab both appear in the grammar, we would
like to have: FIRST(a)FIRST(b) = .

• This would allow the parser to make a correct choice with
a lookahead of exactly one symbol!

Left Factoring
What if my grammar does not have the LL(1) property?

Sometimes, we can transform a grammar to have this property.

Algorithm:

1. For each non-terminal A, find the longest prefix, say a, common to

two or more of its alternatives

2. if a then replace all the A productions, Aab1|ab2|ab3|...|abn|,

where is anything that does not begin with a, with AaZ | and

Zb1|b2|b3|...|bn

Repeat the above until no common prefixes remain

Example: A ab1 | ab2 | ab3 would become A aZ and Z b1|b2|b3

Note the graphical representation:

A

ab3

ab1

ab2

A

b3

b2

b1

aZ

Example
Goal Expr Term Factor * Term
Expr Term + Expr | Factor / Term

| Term – Expr | Factor
| Term Factor number

| id

We have a problem with the different rules for Expr as well as those for Term. In

both cases, the first symbol of the right-hand side is the same (Term and Factor,

respectively). E.g.:
FIRST(Term)=FIRST(Term)FIRST(Term)={number, id}.
FIRST(Factor)=FIRST(Factor)FIRST(Factor)={number, id}.

Applying left factoring:

Expr Term Expr´ FIRST(+)={+}; FIRST(–)={–}; FIRST()={};

Expr´ + Expr | – Expr | FIRST(–) FIRST(+) FIRST()= =

Term Factor Term´ FIRST(*)={*}; FIRST(/)={/}; FIRST()={};

Term´ * Term | / Term | FIRST(*) FIRST(/) FIRST()= =

Example (cont.)
Rule Sentential Form Input

1. Goal Expr

2. Expr Term Expr´

3. Expr´ + Expr

4. | - Expr

5. |

6. Term Factor Term´

7. Term´ * Term

8. | / Term

9. |

10. Factor number

11. | id

The next symbol

determines each choice

correctly. No backtracking

needed.

Example (cont.)

Rule Sentential Form Input
- Goal | x – 2*y

1 Expr | x – 2*y

2 Term Expr´ | x – 2*y

6 Factor Term´ Expr´ | x – 2*y

11 id Term´ Expr´ | x – 2*y

Match id Term´ Expr´ x | – 2*y

9 id Expr´ x | – 2*y

4 id – Expr x | – 2*y

Match id – Expr x – | 2*y

2 id – Term Expr´ x – | 2*y

6 id – Factor Term´ Expr´ x – | 2*y

10 id – num Term´ Expr´ x – | 2*y

Match id – num Term´ Expr´ x – 2 | *y

7 id – num * Term Expr´ x – 2 | *y

Match id – num * Term Expr´ x – 2* | y

6 id – num * Factor Term´ Expr´ x – 2* | y

11 id – num * id Term Expr´ x – 2* | y

Match id – num * id Term´ Expr´ x – 2*y |

9 id – num * id Expr´ x – 2*y |

5 id – num * id x – 2*y |

1. Goal Expr

2. Expr Term Expr´

3. Expr´ + Expr

4. | - Expr

5. |

6. Term Factor Term´

7. Term´ * Term

8. | / Term

9. |

10. Factor number

11. | id

The next symbol

determines each choice

correctly. No backtracking

needed.

Conclusion

• Top-down parsing:

– recursive with backtracking (not often used in practice)

– recursive predictive

• Nonrecursive Predictive Parsing is possible too: maintain a stack

explicitly rather than implicitly via recursion and determine the

production to be applied using a table (Aho, pp.186-190).

• Given a Context Free Grammar that doesn’t meet the LL(1) condition, it

is undecidable whether or not an equivalent LL(1) grammar exists.

• Next time: Bottom-Up Parsing

