Top-Down Parsing

Parsing:

- Context-free syntax is expressed with a context-free grammar.
- The process of discovering a derivation for some sentence.

Recursive-Descent Parsing

- 1. Construct the root with the starting symbol of the grammar.
- 2. Repeat until the fringe of the parse tree matches the input string:
- Assuming a node labelled A, select a production with A on its left-hand-side and, for each symbol on its right-hand-side, construct the appropriate child.
- When a terminal symbol is added to the fringe and it doesn't match the fringe, backtrack.
- Find the next node to be expanded.

The key is picking the right production in the first step: that choice should be guided by the input string.

Example: Parse $x-2^{*} y$

Example:

	Goal \rightarrow Expr	5. Term \rightarrow Term * Factor
	2. Expr \rightarrow Expr + Term	6. \| Term / Factor
3.	\| Expr-Term	7. \| Factor
4.	4. \| Term	8. Factor \rightarrow number

Rule	Sentential Form	Input

Example: Parse $x-2^{*} y$

Example:

Goal \rightarrow Expr	5. Term \rightarrow Term * Factor
Expr \rightarrow Expr + Term	6. \| Term/Factor
\| Expr-Term	7. \| Factor
\| Term	8. Factor \rightarrow number

Rule	Sentential Form	Input
-	Goal	$\mathrm{x}-2^{*} \mathrm{y}$
1	Expr	$\mathrm{x}-2^{*} \mathrm{y}$
2	Expr + Term	$\mathrm{x}-2^{*} \mathrm{y}$
4	Term + Term	$\mathrm{x}-2^{*} \mathrm{y}$
7	Factor + Term	$\mathrm{x}-2^{*} \mathrm{y}$
9	id + Term	$\mathrm{x}-2^{*} \mathrm{y}$
Fail	id + Term	$\mathrm{x} \mid-2^{*} \mathrm{y}$
Back	Expr	$\mathrm{x}-2^{*} \mathrm{y}$
3	Expr - Term	$\mathrm{x}-2^{*} \mathrm{y}$
4	Term - Term	$\mathrm{x}-2^{*} \mathrm{y}$
7	Factor - Term	$\mathrm{x}-2^{*} \mathrm{y}$
9	id - Term	$\mathrm{x}-2^{*} \mathrm{y}$
Match	id - Term	$\mathrm{x}-\mid 2^{*} \mathrm{y}$
7	id - Factor	$\mathrm{x}-\mid 2^{*} \mathrm{y}$
9	id - num	$\mathrm{x}-\mid 2^{*} \mathrm{y}$
Fail	id - num	$\mathrm{x}-2 \mid * \mathrm{y}$
Back	id - Term	$\mathrm{x}-\mid 2^{*} \mathrm{y}$
5	id - Term $*$ Factor	$\mathrm{x}-\mid 2^{*} \mathrm{y}$
7	id - Factor $*$ Factor	$\mathrm{x}-\mid 2^{*} \mathrm{y}$
8	id - num $*$ Factor	$\mathrm{x}-\mid 2^{*} \mathrm{y}$
match	id - num $*$ Factor	$\mathrm{x}-2^{*} \mid \mathrm{y}$
9	id - num $*$ id	$\mathrm{x}-2^{*} \mid \mathrm{y}$
match	id - num $*$ id	$\mathrm{x}-2^{*} \mathrm{y} \mid$

Example: Parse $x-2^{*} y$

Example:

	al \rightarrow Expr	5. Term \rightarrow Term ${ }^{*}$ Factor
	Expr \rightarrow Expr + Term	6. \| Term / Factor
3.	\| Expr-Term	7. \| Factor
4.	\| Term	8. Factor \rightarrow numb

Rule	Sentential Form	Input
-	Goal	$\mid \mathrm{x}-2^{*} \mathrm{y}$
1	Expr	$\mid \mathrm{x}-2^{*} \mathrm{y}$
2	Expr + Term	$\mid \mathrm{x}-2^{*} \mathrm{y}$
2	Expr + Term + Term	$\mid \mathrm{x}-2^{*} \mathrm{y}$
2	Expr + Term + Term + Term	$\mid \mathrm{x}-2^{*} \mathrm{y}$
2	Expr + Term + Term $+\ldots+$ Term	$\mathrm{x}-2^{*} \mathrm{y}$

- Wrong choice leads to non-termination!
- This is a bad property for a parser!
- Parser must make the right choice!

Left-Recursive Grammars

- Definition: A grammar is left-recursive if it has a non-terminal symbol A, such that there is a derivation $A \Rightarrow A a$, for some string a.
- A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop.

Eliminating left-recursion:

- In many cases, it is sufficient to replace $A \rightarrow A a \mid b$ with $A \rightarrow b A^{\prime}$ and $A^{\prime} \rightarrow a A^{\prime} \mid \varepsilon$
- Example:

Sum \rightarrow Sum+number | number would become:

Sum \rightarrow number Sum'
Sum' \rightarrow +number Sum ${ }^{\prime} \mid \varepsilon$

Eliminating Left Recursion

Example:

Applying the transformation to the Grammar of the Example we get:

Expr \rightarrow Term Expr'
Expr' $\rightarrow+$ Term Expr' $\mid-T e r m$ Expr ${ }^{\prime} \mid \varepsilon$
Term \rightarrow Factor Term'
Term' $\rightarrow{ }^{*}$ Factor Term' | / Factor Term' | ε
(Goal \rightarrow Expr and Factor \rightarrow number / id
remain unchanged)
Non-intuitive, but it works!

Where are we?

- We can produce a top-down parser, but:
- if it picks the wrong production rule it has to backtrack.
- Idea: look ahead in input and use context to pick correctly.
- How much lookahead is needed?
- In general, an arbitrarily large amount.
- Fortunately, most programming language constructs fall into subclasses of context-free grammars that can be parsed with limited lookahead.

Predictive Parsing

- Basic idea:
- For any production $A \rightarrow a / b$ we would like to have a distinct way of choosing the correct production to expand.
- FIRST sets:
- For any symbol A, $\operatorname{FIRST}(A)$ is defined as the set of terminal symbols that appear as the first symbol of one or more strings derived from A.
E.g. Expr \rightarrow Term Expr'

Expr' $\rightarrow+$ Term Expr' $/-$ Term Expr' $/ \varepsilon$
Term \rightarrow Factor Term
Term \rightarrow Factor Term'
Term' $\rightarrow{ }^{*}$ Factor Term' $/ /$ Factor Term' $/ \varepsilon$
(Goal \rightarrow Expr and Factor \rightarrow number/id
$\operatorname{FIRST}\left(\right.$ Expr $\left.^{\prime}\right)=\{+,-, \varepsilon\}, \operatorname{FIRST}($ Term' $)=\left\{{ }^{*}, /, \varepsilon\right\}, \operatorname{FIRST}($ Factor $)=\{$ number, id $\}$

The LL(1) property

- If $A \rightarrow a$ and $A \rightarrow b$ both appear in the grammar, we would like to have: $\operatorname{FIRST}(a) \cap \operatorname{FIRST}(b)=\varnothing$.
- This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

Left Factoring

What if my grammar does not have the LL(1) property?
Sometimes, we can transform a grammar to have this property.

Algorithm:

1. For each non-terminal A, find the longest prefix, say a, common to two or more of its alternatives
2. if $a \neq \varepsilon$ then replace all the A productions, $A \rightarrow a b_{1} / a b_{2} / a b_{3} / \ldots / a b_{n} / \gamma$, where γ is anything that does not begin with a, with $A \rightarrow a Z / \gamma$ and $Z \rightarrow b_{1} / b_{2} / b_{3} / \ldots / b_{n}$
Repeat the above until no common prefixes remain
Example: $A \rightarrow a b_{1} / a b_{2} / a b_{3}$ would become $A \rightarrow a Z$ and $Z \rightarrow b_{1} / b_{2} / b_{3}$
Note the graphical representation:

Example

$$
\begin{aligned}
\text { Goal } \rightarrow & \rightarrow \text { Expr } \\
\text { Expr } & \rightarrow \text { Term + Expr } \\
& / \text { Term }- \text { Expr } \\
& / \text { Term }
\end{aligned}
$$

We have a problem with the different rules for Expr as well as those for Term. In both cases, the first symbol of the right-hand side is the same (Term and Factor, respectively). E.g.:

FIRST(Term) $=$ FIRST(Term) \cap FIRST(Term) $=\{$ number, id $\}$.
FIRST(Factor) $=$ FIRST(Factor) \cap FIRST(Factor) $=\{$ number, id $\}$.

Applying left factoring:

$$
\begin{aligned}
& \text { Expr } \rightarrow \text { Term Expr' } \\
& \text { Expr } \rightarrow+\text { Expr } /- \text { Expr } / \varepsilon \\
& \text { Term } \rightarrow \text { Factor Term' } \\
& \text { Term }{ }^{\prime} \rightarrow * \text { Term } / / \text { Term } / \varepsilon
\end{aligned}
$$

$\operatorname{FIRST}(+)=\{+\} ; \operatorname{FIRST}(-)=\{-\} ; \operatorname{FIRST}(\varepsilon)=\{\varepsilon\} ;$ $\operatorname{FIRST}(-) \cap \operatorname{FIRST}(+) \cap \operatorname{FIRST}(\varepsilon)==\varnothing$
$\operatorname{FIRST}(*)=\{*\} ; \operatorname{FIRST}(/)=\{/\} ; \operatorname{FIRST}(\varepsilon)=\{\varepsilon\} ;$ $\operatorname{FIRST}(*) \cap \operatorname{FIRST}(/) \cap \operatorname{FIRST}(\varepsilon)==\varnothing$

Example (cont.)

```
1. Goal }->\mathrm{ Expr
2. Expr }->\mathrm{ Term Expr'
3. Expr'}->+\mathrm{ Expr
4. /- Expr
5. }/
6. Term }->\mathrm{ Factor Term
7. Term'-> * Term
8. // Term
9. }/
10. Factor }->\mathrm{ number
11. /id
```

The next symbol determines each choice correctly. No backtracking needed.

Rule	Sentential Form	Input

Example (cont.)

```
1. Goal \(\rightarrow\) Expr
2. Expr \(\rightarrow\) Term Expr \({ }^{\prime}\)
3. Expr \(\rightarrow+\) Expr
4. \(/-\) Expr
5. \(/ \varepsilon\)
6. Term \(\rightarrow\) Factor Term \({ }^{\prime}\)
7. Term' \(\rightarrow\) * Term
8. // Term
9. \(/ \varepsilon\)
10. Factor \(\rightarrow\) number
11. /id
```

The next symbol determines each choice correctly. No backtracking needed.

Rule	Sentential Form	Input
-	Goal	$1 \mathrm{x}-2^{*} \mathrm{y}$
1	Expr	$\mid \mathrm{x}-2 * \mathrm{y}$
2	Term Expr ${ }^{\prime}$	$1 \mathrm{x}-2^{*} \mathrm{y}$
6	Factor Term' Expr'	$1 \mathrm{x}-2^{*} \mathrm{y}$
11	id Term' Expr'	\|x-2*y
Match	id Term' Expr'	$\mathrm{x} \mid-2 * y$
9	id ${ }^{\text {Expr }}{ }^{\prime}$	$\mathrm{x} \mid-2 * \mathrm{y}$
4	id-Expr	$x \mid-2 * y$
Match	id-Expr	$x-1{ }^{*} \mathrm{y}$
2	id - Term Expr ${ }^{\prime}$	$x-12 * y$
6	id - Factor Term' ${ }^{\text {Expr }}{ }^{\prime}$	$x-12 * y$
10	id-num Term' Expr'	$x-12 * y$
Match	id-num Term' Expr'	$\mathrm{x}-\left.2\right\|^{*} \mathrm{y}$
7	id - num * Term Expr ${ }^{\prime}$	$\mathrm{x}-2{ }^{*} \mathrm{y}$
Match	id - num * Term Expr ${ }^{\prime}$	$x-2^{*} \mid \mathrm{y}$
6	id-num * Factor Term' Expr'	$x-2^{*} \mid \mathrm{y}$
11	id-num * id Term' ${ }^{\prime}$ Expr ${ }^{\prime}$	$x-2^{*} \mid y$
Match	id-num * id Term' Expr ${ }^{\prime}$	$x-2 * y \mid$
9	id - num * id Expr ${ }^{\prime}$	$x-2 * y \mid$
5	id-num *id	$x-2 * y \mid$

Conclusion

- Top-down parsing:
- recursive with backtracking (not often used in practice)
- recursive predictive
- Nonrecursive Predictive Parsing is possible too: maintain a stack explicitly rather than implicitly via recursion and determine the production to be applied using a table (Aho, pp.186-190).
- Given a Context Free Grammar that doesn't meet the LL(1) condition, it is undecidable whether or not an equivalent $\operatorname{LL}(1)$ grammar exists.
- Next time: Bottom-Up Parsing

